Use of reprocessed AMVs in the ECMWF Interim Re-analysis

Claire Delsol EUMETSAT Fellow

Dick Dee and Sakari Uppala (Re-Analysis), Ioannis Mallas (Data), Niels Bormann, Jean-Noël Thépaut, and Peter Bauer (Satellite section) Leo van de Berg (EUMETSAT)

Talk Outline

- Introduction
- 1989 experiment (Met-3)
- 1995 experiment: XADC period (Met-3 and Met-5)
- Summary

Observing systems used in:

EUMETSAT have reprocessed the AMV product for the Interim project:

- improvements in derivation techniques
- fully automated use of IR, VIS, WV images (better approach for h.a.)
- use of QI (allows greater control on usage of data by NWP users)
- better spatial and temporal coverage (1 ¹/₂ hrly compared to 2-4 times a day).

AMV monitoring and impact Study I

Interim IFS configuration: CY31R2 T255 (T159) L60 (4DVAR 12hr window) *ECMWF Newsletter n°110*

QC for new data: Updated blacklist + quality control same as current pre-MSG operational one except for tighter Tropics as a result of findings from previous ERA studies (Bormann, 2003) + thinning at 140km x 140km + use fg-dep QI 1

Data: reprocessed Meteosat-3 (centred on 0°) for 3 months: 4th Feb to 4th May 1989

Sample of AMV coverage: 6th Feb 1989

Used (after QC)

- increase in numbers at high levels (IR + WV contribution) + low levels (IR + VIS contribution)
- mid level constrained more by strict quality control.

all

Used U, V

Met 8 region

ECMWF

Statistical significance (t-test) RMS Vector wind forecast error validated against ERA-40 analysis (90 cases)

	Forecast Day	1000hPa	850hPa	500hPa	200hPa	
NH Extra-trop	2					
	3	10%				
	5					
	7	10%				
Tropics	2	0.2%	0.1%			
	3	0.5%	0.1%			
	5	2%	1.0%			No
	7	5%	10%			that
SH Extra-Trop	2		10%	10%		eno
	3					Sigi
	5					
	7					
Europe	2			2%	10%	
	3			10%		
	5		5%	10%	10%	Impr blac
	7	10%				Degr

No entry means that there is not enough statistical significance

Improved scores in **black** Degraded ones in **orange**.

Mean wind analysis (control)

Vector difference of mean wind analysis between ctl and expt (new Met3)

AMV monitoring and impact study II: XADC period

This corresponds to period when Meteosat-5 was operational at 0° and Meteosat-3 was leant to the US due to a faulty GOES satellite. Reprocessing of both datasets gives us an opportunity to look at the impact of having more reprocessed datasets simultaneously.

Interim IFS configuration: CY31R2 T255 (T159) L60 (4DVAR 12hr window)

Data: reprocessed Meteosat-5 (0°) and Meteosat-3 (75° W) for 3 months: 1st Jan to 31st Mar 1995

QC: as for the 1989 experiment.

Example of coverage: 19950102

Original Met5 (satid: 5)

EXPT1

Statistical significance RMS Vector wind forecast error validated against ERA-40 analysis

	Forecast Day	2	3	4	5	6	7
1000hPa	NH	0.5%	0.1%	10%			2%
	SH						
	Trop			10%		10%	
850hPa	NH	0.5%	1%	5%		5%	0.2%
	SH						
	Trop		5%				
500hPa	NH	10%	5%			5%	0.5%
	SH	5%	10%				
	Trop		2%	5%	5%	1%	
200hPa	NH						10%
	SH	10%	2%	5%			
	Trop	2%	0.2%	0.5%			

VERY good scores except for Tropics!

Improved scores in **black** Degraded ones in **orange**. Smaller % = more significant impact

EXPT2

Statistical significance RMS Vector wind forecast error validated against ERA-40 analysis

	Forecast Day	2	3	4	5	6	7
1000hPa	NH		5%			5%	
	SH	2%	5%		10%		
	Trop		10%				
850hPa	NH						
	SH	2%	10%			10%	
	Trop		5%				
500hPa	NH					10%	
	SH	5%	1%	10%	10%		
	Trop	0.5%	0.1%	5%		5%	10%
200hPa	NH	2%	5%			10%	10%
	SH	10%	1%	2%	5%	10%	10%
	Trop	0.2%	2%	10%			

• NH extra-tr not as good • SH extra-tr particularly good at high levels •Tropics degraded

EXPT 3

Statistical significance RMS Vector wind forecast error validated against ERA-40 analysis

	Forecast Day	2	3	4	5	6	7
1000hPa	NH	1%	2%				
	SH	10%					
	Trop						
850hPa	NH	0.5%	5%			10%	2%
	SH	10%					
	Trop	2%				10%	
500hPa	NH	1%	5%			5%	0.5%
	SH		2%	10%		10%	
	Trop						
200hPa	NH	0.1%	1%			10%	5%
	SH			1%	10%	5%	10%
	Trop	1%	5%				

• NH extra-tropics better • Tropics not as bad!

Negative impact in Tropics: WHY?

- Tropics difficult area to validate against other observations
- Subtropical jets area: sensitive (location + intensity)
- Tested blacklisting more strictly (remove the mid-to-high-level biases between 30°S and $30^{\circ}N up$ to 300hPa)
 - removes negative impact locally but the negative impact still present at the very high levels (ie. 200hPa)

Further Investigation:

- Difference between 1989 and 1995 experiments is in the observing system: ERS-1 scatterometer surface winds.
- Run experiment during the wet season for the ITCZ (more active season)

SUMMARY

Reprocessed winds were monitored as part of the Interim Re-analysis project. EUMETSAT's support for this has been of great value.

A first quality and impact study:

- Reprocessed Met-3 AMVs for Feb-April 1989
- Large increase in the amount of AMVs + improved std dev of departures BUT biases at mid-levels semi-transparency correction method?
- Forecast impact: relatively neutral in extra-tropics and very positive in low-level Tropics.

A second study:

- for XADC period (1995) Met-3 (75°W) and Met-5 (0°).
- Mid level bias still present.
- Very positive impact in Extra-Tropics but very negative in Tropics at high levels
- Blacklisting Tropics more strictly reduces the -ve impact locally but more -ve at 200hPa.

Areas to pursue: ITCZ wet season (July-Sept) + impact of the scatterometer data

Scatterometer surface wind - Interim expt: 1992 (May)

ECMWF

Stricter blacklist

Statistical significance RMS Vector wind forecast error validated against ERA-40 analysis

	Forecast Day	2	3	4	5	6	7
1000hPa	NH	10%					
	SH		0.2%	1%			
	Trop		10%	10%		2%	10%
850hPa	NH				5%		
	SH		0.5%	1%			
	Trop					2%	2%
500hPa	NH			10%	2%		
	SH	0.2%	0.5%	10%			
	Trop						10%
200hPa	NH			10%	0.2%	5%	
	SH	1%	0.5%	0.2%	10%		
	Trop	0.1%	0.1%	0.2%	2%		

Better in Tropics : -ve impact confined to higher levels BUT –ve impact in >500hPa in NH

Improved scores in **black** Degraded ones in **orange**.

